Note: This question is part of a series of questions that use the same scenario. For your convenience, the
scenario is repeated in each question. Each question presents a different goal and answer choices, but the text
of the scenario is exactly the same in each question in this series.
A travel agency named Margie’s Travel sells airline tickets to customers in the United States.
Margie’s Travel wants you to provide insights and predictions on flight delays. The agency is considering
implementing a system that will communicate to its customers as the flight departure nears about possible
delays due to weather conditions. The flight data contains the following attributes:
DepartureDate: The departure date aggregated at a per hour granularity
Carrier: The code assigned by the IATA and commonly used to identify a carrier
OriginAirportID: An identification number assigned by the USDOT to identify a unique airport (the flight’sorigin)
DestAirportID: An identification number assigned by the USDOT to identify a unique airport (the flight’s
destination)
DepDel: The departure delay in minutes
DepDel30: A Boolean value indicating whether the departure was delayed by 30 minutes or more (a value of
1 indicates that the departure was delayed by 30 minutes or more)
The weather data contains the following attributes: AirportID, ReadingDate (YYYY/MM/DD HH),
SkyConditionVisibility, WeatherType, WindSpeed, StationPressure, PressureChange, and HourlyPrecip.
You need to use historical data about on-time flight performance and the weather data to predict whether the
departure of a scheduled flight will be delayed by more than 30 minutes.
Which method should you use?
A.
clustering
B.
linear regression
C.
classification
D.
anomaly detection
Explanation:
https://gallery.cortanaintelligence.com/Experiment/Binary-Classification-Flight-delay-prediction-3