Which statement is true about loop guard?
A.
Loop guard only operates on interfaces that are considered point-to-point by the spanning tree.
B.
Loop guard only operates on root ports.
C.
Loop guard only operates on designated ports.
D.
Loop guard only operates on edge ports.
Explanation:
Understanding How Loop Guard Works
Unidirectional link failures may cause a root port or alternate port to become designated as root if
BPDUs are absent. Some software failures may introduce temporary loops in the network. Loop
guard checks if a root port or an alternate root port receives BPDUs. If the port is receiving
BPDUs, loop guard puts the port into an inconsistent state until it starts receiving BPDUs again.
Loop guard isolates the failure and lets spanning tree converge to a stable topology without the
failed link or bridge.
You can enable loop guard per port with the set span tree guard loop command.
Note When you are in MST mode, you can set all the ports on a switch with the set span tree
global-defaults loop-guard command.
When you enable loop guard, it is automatically applied to all of the active instances or VLANs to
which that port belongs. When you disable loop guard, it is disabled for the specified ports.
Disabling loop guard moves all loop-inconsistent ports to the listening state.
If you enable loop guard on a channel and the first link becomes unidirectional, loop guard blocks
the entire channel until the affected port is removed from the channel. Figure 8-6 shows loop
guard in a triangle switch configuration.
Figure 8-6 Triangle Switch Configuration with Loop GuardFigure 8-6 illustrates the following configuration:
Switches A and B are distribution switches.
Switch C is an access switch.
Loop guard is enabled on ports 3/1 and 3/2 on Switches A, B, and C.
Use loop guard only in topologies where there are blocked ports. Topologies that have no blocked
ports, which are loop free, do not need to enable this feature. Enabling loop guard on a root switch
has no effect but provides protection when a root switch becomes a nonroot switch.
Follow these guidelines when using loop guard:
Do not enable loop guard on PortFast-enabled or dynamic VLAN ports.
Do not enable PortFast on loop guard-enabled ports.
Do not enable loop guard if root guard is enabled.
Do not enable loop guard on ports that are connected to a shared link.
Note: We recommend that you enable loop guard on root ports and alternate root ports on access
switches.
Loop guard interacts with other features as follows:
Loop guard does not affect the functionality of UplinkFast or BackboneFast.
Root guard forces a port to always be designated as the root port. Loop guard is effective only if
the port is a root port or an alternate port. Do not enable loop guard and root guard on a port at the
same time.
PortFast transitions a port into a forwarding state immediately when a link is established. Because
a PortFast-enabled port will not be a root port or alternate port, loop guard and PortFast cannot be
configured on the same port. Assigning dynamic VLAN membership for the port requires that the
port is PortFast enabled. Do not configure a loop guard-enabled port with dynamic VLANmembership.
If your network has a type-inconsistent port or a PVID-inconsistent port, all BPDUs are dropped
until the misconfiguration is corrected. The port transitions out of the inconsistent state after the
message age expires. Loop guard ignores the message age expiration on type-inconsistent ports
and PVID-inconsistent ports. If the port is already blocked by loop guard, misconfigured BPDUs
that are received on the port make loop guard recover, but the port is moved into the typeinconsistent state or PVID-inconsistent state.
In high-availability switch configurations, if a port is put into the blocked state by loop guard, it
remains blocked even after a switchover to the redundant supervisor engine. The newly activated
supervisor engine recovers the port only after receiving a BPDU on that port.
Loop guard uses the ports known to spanning tree. Loop guard can take advantage of logical ports
provided by the Port Aggregation Protocol (PAgP). However, to form a channel, all the physical
ports grouped in the channel must have compatible configurations. PAgP enforces uniform
configurations of root guard or loop guard on all the physical ports to form a channel.
These caveats apply to loop guard:
–Spanning tree always chooses the first operational port in the channel to send the BPDUs. If that
link becomes unidirectional, loop guard blocks the channel, even if other links in the channel are
functioning properly.
–If a set of ports that are already blocked by loop guard are grouped together to form a channel,
spanning tree loses all the state information for those ports and the new channel port may obtain
the forwarding state with a designated role.
–If a channel is blocked by loop guard and the channel breaks, spanning tree loses all the state
information.
The individual physical ports may obtain the forwarding state with the designated role, even if one
or more of the links that formed the channel are unidirectional.
You can enable UniDirectional Link Detection (UDLD) to help isolate the link failure. A loop may
occur until
UDLD detects the failure, but loop guard will not be able to detect it.
Loop guard has no effect on a disabled spanning tree instance or a VLAN.