which component of the configuration is preventing PVST+ load balancing between SW1 and SW2 links

A customer network engineer has made configuration changes that have resulted in some loss of
connectivity. You have been called in to evaluate a switch network and suggest resolutions to the
problems.

You have configured PVST+ load balancing between SW1 and the New_Switch in such a way that
both the links E2/2 and E2/3 are utilized for traffic flow, which component of the configuration is
preventing PVST+ load balancing between SW1 and SW2 links

A customer network engineer has made configuration changes that have resulted in some loss of
connectivity. You have been called in to evaluate a switch network and suggest resolutions to the
problems.

You have configured PVST+ load balancing between SW1 and the New_Switch in such a way that
both the links E2/2 and E2/3 are utilized for traffic flow, which component of the configuration is
preventing PVST+ load balancing between SW1 and SW2 links

A.
Port priority configuration on SW1

B.
Port priority configuration on the New_Switch

C.
Path cost configuration on SW1

D.
Path cost configuration on the New_Switch

Explanation:
Here is the configuration found on the New_Switch:

This causes the port cost for link eth 1/3 to increase the path cost to 250 for all VLANs, making
that link less preferred so that only eth 1/2 will be used.



Leave a Reply 1

Your email address will not be published. Required fields are marked *


Seif

Seif

Test your preparation for Cisco 300-135 with these actual 300-135 new questions below. Exam questions are a sure method to validate one’s preparation for actual certification exam:

QUESTION 76
The implementations group has been using the test bed to do a `proof-of-concept’ that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing schemes, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened DSW1 will not become the active router for HSRP group 10.
Use the supported commands to isolated the cause of this fault and answer the following questions.
What is the solution to the fault condition?

A. Under the interface vlan 10 configuration enter standby 10 preempt command.
B. Under the track 1 object configuration delete the threshold metric up 1 down 2 command and enter the threshold metric up 61 down 62 command.
C. Under the track 10 object configuration delete the threshold metric up 61 down 62 command and enter the threshold metric up 1 down 2 command.
D. Under the interface vlan 10 configuration delete the standby 10 track1 decrement 60 command and enter the standby 10 track 10 decrement 60 command.

Answer: D
Explanation:
On DSW1, related to HSRP, under VLAN 10 change the given track 1 command to instead use the track 10 command.

Ticket 13 : DHCP Issue

Topology Overview (Actual Troubleshooting lab design is for below network design)

– Client Should have IP 10.2.1.3
– EIGRP 100 is running between switch DSW1 & DSW2
– OSPF (Process ID 1) is running between R1, R2, R3, R4
– Network of OSPF is redistributed in EIGRP
– BGP 65001 is configured on R1 with Webserver cloud AS 65002
– HSRP is running between DSW1 & DSW2 Switches

The company has created the test bed shown in the layer 2 and layer 3 topology exhibits.
This network consists of four routers, two layer 3 switches and two layer 2 switches.
In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1.
DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary.
R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP’s network. Because the company’s address space is in the private range.
R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network.
ASW1 and ASW2 are layer 2 switches.
NTP is enabled on all devices with 209.65.200.226 serving as the master clock source.
The client workstations receive their IP address and default gateway via R4’s DHCP server.
The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2.
In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6.
DSW1, DSW2 and R4 are running RIPng process name RIP_ZONE.
The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running over the underlying IPv4 OSPF domain. Redistrution is enabled where necessary.
Recently the implementation group has been using the test bed to do a `proof-of-concept’ on several implementations. This involved changing the configuration on one or more of the devices. You will be presented with a series of trouble tickets related to issues introduced during these configurations.

Note: Although trouble tickets have many similar fault indications, each ticket has its own issue and solution.

Each ticket has 3 sub questions that need to be answered & topology remains same.
Question-1 Fault is found on which device,
Question-2 Fault condition is related to,
Question-3 What exact problem is seen & what needs to be done for solution

Solution:

– When we check on client 1 & Client 2 desktop we are not receiving DHCP address from R4 ipconfig —– Client will be receiving Private IP address 169.254.X.X
– From ASW1 we can ping 10.2.1.254….
– On ASW1 VLAN10 is allowed in trunk & access command will is enabled on interface but DHCP IP address is not recd.
On R4 DHCP ip address is not allowed for network 10.2.1.0/24 which clearly shows the problem lies on R4 & the problem is of DHCP

QUESTION 77
The implementations group has been using the test bed to do a `proof-of-concept’ that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing schemes, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address.
Use the supported commands to isolate the cause of this fault and answer the following question.
On which device is the fault condition located?

A. R1
B. R2
C. R3
D. R4
E. DSW1
F. DSW2
G. ASW1
H. ASW2

Answer: D
Explanation:
On R4 the DHCP IP address is not allowed for network 10.2.1.0/24 which clearly shows the problem lies on R4 & the problem is with DHCP

QUESTION 78
The implementations group has been using the test bed to do a `proof-of-concept’ that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing schemes, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address.
Use the supported commands to isolate the cause of this fault and answer the following question.
The fault condition is related to which technology?

A. NTP
B. IP DHCP Server
C. Ipv4 OSPF Routing
D. Ipv4 EIGRP Routing.
E. Ipv4 Route Redistribution.
F. Ipv6 RIP Routing
G. Ipv6 OSPF Routing
H. Ipv4 and Ipv6 Interoperability
I. Ipv4 layer 3 security.

Answer: B
Explanation:
On R4 the DHCP IP address is not allowed for network 10.2.1.0/24 which clearly shows the problem lies on R4 & the problem is with DHCP

QUESTION 79
The implementations group has been using the test bed to do a `proof-of-concept’ that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing schemes, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address.
Use the supported commands to isolate the cause of this fault and answer the following question.
What is the solution to the fault condition?

A. Under the global configuration, delete the no ip dhcp use vrf connected command.
B. Under the IP DHCP pool configuration, delete the default -router 10.2.1.254 command and enter the
default-router 10.1.4.5 command.
C. Under the IP DHCP pool configuration, delete the network 10.2.1.0 255.255.255.0 command and
enter the network 10.1.4.0 255.255.255.0 command.
D. Under the IP DHCP pool configuration, issue the no ip dhcp excluded-address 10.2.1.1 10.2.1.253
command and enter the ip dhcp excluded-address 10.2.1.1 10.2.1.2 command.

Answer: D
Explanation:
On R4 the DHCP IP address is not allowed for network 10.2.1.0/24 which clearly shows the problem lies on R4 & the problem is with DHCP

Ticket 14 : EIGRP Passive Interface

Topology Overview (Actual Troubleshooting lab design is for below network design)

– Client Should have IP 10.2.1.3
– EIGRP 100 is running between switch DSW1 & DSW2
– OSPF (Process ID 1) is running between R1, R2, R3, R4
– Network of OSPF is redistributed in EIGRP
– BGP 65001 is configured on R1 with Webserver cloud AS 65002
– HSRP is running between DSW1 & DSW2 Switches

The company has created the test bed shown in the layer 2 and layer 3 topology exhibits.
This network consists of four routers, two layer 3 switches and two layer 2 switches.
In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1.
DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary.
R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP’s network. Because the company’s address space is in the private range.
R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network.
ASW1 and ASW2 are layer 2 switches.
NTP is enabled on all devices with 209.65.200.226 serving as the master clock source.
The client workstations receive their IP address and default gateway via R4’s DHCP server.
The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2.
In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6.
DSW1, DSW2 and R4 are running RIPng process name RIP_ZONE.
The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running over the underlying IPv4 OSPF domain. Redistrution is enabled where necessary.
Recently the implementation group has been using the test bed to do a `proof-of-concept’ on several implementations. This involved changing the configuration on one or more of the devices. You will be presented with a series of trouble tickets related to issues introduced during these configurations.

Note: Although trouble tickets have many similar fault indications, each ticket has its own issue and solution.
Each ticket has 3 sub questions that need to be answered & topology remains same.
Question-1 Fault is found on which device,
Question-2 Fault condition is related to,
Question-3 What exact problem is seen & what needs to be done for solution

The neighborship between R4 and DSW1 wasn’t established. Client 1 can’t ping R4 The

Configuration on R4
router eigrp 10
passive-interface default
redistribute ospf 1 route-map OSPF->EIGRP
network 10.1.4.4 0.0.0.3
network 10.1.4.8 0.0.0.3
default-metric 10000 100 255 1 10000
no auto-summary

QUESTION 80
On which device is the fault condition located?

A. R1
B. R2
C. R3
D. R4
E. DSW1
F. DSW2
G. ASW1
H. ASW2

Answer: D

QUESTION 81
The fault condition is related to which technology?

A. NTP
B. IP DHCP Server
C. IPv4 OSPF Routing
D. IPv4 EIGRP Routing
E. IPv4 Route Redistribution
F. IPv6 RIP Routing
G. IPv6 OSPF Routing
H. IPV4 and IPV6 Interoperability
I. IPV4 layer 3 security

Answer: D

QUESTION 82
What is the solution to the fault condition ?

A. Remove “Passive interface” in Interface f0/1 and f0/0
B. Disable auto summary on the EIGRP process
C. Change the AS number on the EIGRP routing process from 1 to 10 to much the AS number used on DSW1 and DSW2
D. Under the EIGRP process,delete the network 10.1.4.0 0.0.0.255 command and enter the network 10.1.4.4 0.0.0.252 and 10.1.4.8 0.0.0.252 commands.

Answer: A

QUESTION 83
Drag and Drop Questions
FCAPS is a network maintenance model defined by ISO. FCAPS stands for:

Answer:

QUESTION 84
Drag and Drop Questions
There are many Network Maintenance models. Match the model names on the left to the options on the right:

Answer:

QUESTION 85
……

I have uploaded all the real questions of 300-135 exam to my Google Drive: https://drive.google.com/open?id=0B3Syig5i8gpDZmFQVlZDZnpLejA
Welcome to download them freely!